
 __ __
 / / ____ ____ / /_ ____ _____
 / / / __ `/ __ `/ __ \/ __ \/ ___/ High-Order Lagrangian
 / /___/ /_/ / /_/ / / / / /_/ (__) Hydrodynamics Miniapp
 /_____/__,_/__, /_/ /_/____/____/ https://github.com/CEED/Laghos
 /____/

 1

Summary	Version	

Results and benchmark tarball are for version 1.0 from the Laghos repo (tag v1.0).

	

Purpose	of	Benchmark	

Laghos (LAGrangian High-Order Solver) is a miniapp that solves the time-dependent Euler
equations of compressible gas dynamics in a moving Lagrangian frame using unstructured high-
order finite element spatial discretization and explicit high-order time-stepping.

Laghos is based on the discretization method described in the following article:

V. Dobrev, Tz. Kolev and R. Rieben
High-order curvilinear finite element methods for Lagrangian hydrodynamics
SIAM Journal on Scientific Computing, (34) 2012, pp. B606-B641

Laghos captures the basic structure of many other compressible shock hydrocodes, including the
BLAST code at Lawrence Livermore National Laboratory. The miniapp is built on top of a general
discretization library, MFEM, thus separating the pointwise physics from finite element and
meshing concerns.

Laghos is a LLNL ASC co-design mini-app that was developed as part of the CEED software
suite, a collection of software benchmarks, miniapps, libraries and APIs for efficient exascale
discretizations based on high-order finite element and spectral element methods. See
http://github.com/ceed for more information and source code availability.

The CEED research is supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of two U.S. Department of Energy organizations (Office of Science and the
National Nuclear Security Administration) responsible for the planning and preparation of a
capable exascale ecosystem, including software, applications, hardware, advanced system
engineering and early testbed platforms, in support of the nation’s exascale computing imperative.

	

Characteristics	of	Benchmark	

In	 each	 time	 step,	 the	 problem	 is	 ultimately	 formulated	 as	 solving	 a	 big	 system	 of	 ordinary	
differential	equations	 (ODE)	 for	 the	unknown	 (high-order)	 velocity,	 internal	energy	and	mesh	
nodes	(position).	The	left-hand	side	of	this	ODE	is	controlled	by	mass	matrices	(one	for	velocity	
and	one	for	energy),	while	the	right-hand	side	is	constructed	from	a	force	matrix.	Laghos	supports	
two	options	for	deriving	and	solving	the	ODE	system,	namely	the	full	assembly	and	the	partial	
assembly	methods.	Partial	assembly	is	the	main	algorithm	of	interest	for	this	benchmark.	

 __ __
 / / ____ ____ / /_ ____ _____
 / / / __ `/ __ `/ __ \/ __ \/ ___/ High-Order Lagrangian
 / /___/ /_/ / /_/ / / / / /_/ (__) Hydrodynamics Miniapp
 /_____/__,_/__, /_/ /_/____/____/ https://github.com/CEED/Laghos
 /____/

 2

	
	
Other	computational	motives	in	Laghos	include	the	following:	
	

• Support	 for	 unstructured	 meshes,	 in	 2D	 and	 3D,	 with	 quadrilateral	 and	 hexahedral	
elements	(triangular	and	tetrahedral	elements	can	also	be	used,	but	with	the	less	efficient	
full	 assembly	 option).	 Serial	 and	 parallel	 mesh	 refinement	 options	 can	 be	 set	 via	 a	
command-line	flag.	

	

• Explicit	 time-stepping	 loop	with	 a	 variety	 of	 time	 integrator	 options.	 Laghos	 supports	
Runge-Kutta	ODE	solvers	of	orders	1,	2,	3,	4	and	6.	

	

• Continuous	and	discontinuous	high-order	finite	element	discretization	spaces	of	runtime-
specified	order.	

	

• Moving	(high-order)	meshes.	
	

• Separation	between	the	assembly	and	the	quadrature	point-based	computations.	
	

• Point-wise	definition	of	mesh	size,	time-step	estimate	and	artificial	viscosity	coefficient.	
	

• Constant-in-time	velocity	mass	operator	that	is	inverted	iteratively	on	each	time	step.	This	
is	an	example	of	an	operator	that	is	prepared	once	(fully	or	partially	assembled),	but	is	
applied	many	times.	The	application	cost	is	dominant	for	this	operator.	

	

• Time-dependent	 force	 matrix	 that	 is	 prepared	 every	 time	 step	 (fully	 or	 partially	
assembled)	 and	 is	 applied	 just	 twice	 per	 “assembly”.	 Both	 the	 preparation	 and	 the	
application	costs	are	important	for	this	operator.	

	

• Domain-decomposed	MPI	parallelism.	
	

• Optional	in-situ	visualization	with	GLVis	and	data	output	for	visualization	/	data	analysis	
with	VisIt.	

	

Code	Structure	

• The	file	laghos.cpp	contains	the	main	driver	with	the	time	integration	loop	starting	
around	line	310.	

• In	each	time	step,	the	ODE	system	of	interest	is	constructed	and	solved	by	the	class	
LagrangianHydroOperator,	defined	around	line	258	of	laghos.cpp	and	
implemented	in	files	laghos_solver.hpp	and	laghos_solver.cpp.	

• All	quadrature-based	computations	are	performed	in	the	function	
LagrangianHydroOperator::UpdateQuadratureData	in	laghos_solver.cpp.	

• Depending	on	the	chosen	option	(-pa	for	partial	assembly	or	-fa	for	full	assembly),	the	
function	LagrangianHydroOperator::Mult	uses	the	corresponding	method	to	
construct	and	solve	the	final	ODE	system.	

 __ __
 / / ____ ____ / /_ ____ _____
 / / / __ `/ __ `/ __ \/ __ \/ ___/ High-Order Lagrangian
 / /___/ /_/ / /_/ / / / / /_/ (__) Hydrodynamics Miniapp
 /_____/__,_/__, /_/ /_/____/____/ https://github.com/CEED/Laghos
 /____/

 3

	
• The	full	assembly	computations	for	all	mass	matrices	are	performed	by	the	MFEM	

library,	e.g.,	classes	MassIntegrator	and	VectorMassIntegrator.	Full	assembly	of	
the	ODE’s	right-hand	side	is	performed	by	utilizing	the	class	ForceIntegrator	defined	
in	laghos_assembly.hpp.	

• The	partial	assembly	computations	are	performed	by	the	classes	ForcePAOperator	
and	MassPAOperator	defined	in	laghos_assembly.hpp.	

• When	partial	assembly	is	used,	the	main	computational	kernels	are	the	Mult*	functions	
of	the	classes	MassPAOperator	and	ForcePAOperator	implemented	in	file	
laghos_assembly.cpp.	These	functions	have	specific	versions	for	quadrilateral	and	
hexahedral	elements.	

• The	orders	of	the	velocity	and	position	(continuous	kinematic	space)	and	the	internal	
energy	(discontinuous	thermodynamic	space)	are	given	by	the	-ov	and	-ot	input	
parameters,	respectively.	

Mechanics	of	Building	the	Benchmark	

Laghos has the following external dependencies:

• hypre,	used	for	parallel	linear	algebra,	we	recommend	version	2.10.0b	
https://computation.llnl.gov/casc/hypre/software.html	
	

• METIS,	used	for	parallel	domain	decomposition	(optional),	we	recommend	version	4.0.3	
http://glaros.dtc.umn.edu/gkhome/metis/metis/download	
	

• MFEM,	used	for	(high-order)	finite	element	discretization,	its	GitHub	master	branch	
https://github.com/mfem/mfem	
	

To build the miniapp, first download hypre and METIS from the links above and put everything
on the same level as Laghos:

~> ls
Laghos/ hypre-2.10.0b.tar.gz metis-4.0.tar.gz

Build hypre (note the --enable-bigint option)

~> tar -zxvf hypre-2.10.0b.tar.gz
~> cd hypre-2.10.0b/src/
~/hypre-2.10.0b/src>./configure --disable-fortran --enable-bigint
~/hypre-2.10.0b/src> make -j
~/hypre-2.10.0b/src> cd ../..

 __ __
 / / ____ ____ / /_ ____ _____
 / / / __ `/ __ `/ __ \/ __ \/ ___/ High-Order Lagrangian
 / /___/ /_/ / /_/ / / / / /_/ (__) Hydrodynamics Miniapp
 /_____/__,_/__, /_/ /_/____/____/ https://github.com/CEED/Laghos
 /____/

 4

Build METIS:

~> tar -zxvf metis-4.0.3.tar.gz
~> cd metis-4.0.3
~/metis-4.0.3> make
~/metis-4.0.3> cd ..
~> ln -s metis-4.0.3 metis-4.0

This build is optional, as MFEM can be built without METIS by specifying MFEM_USE_METIS
= NO below.

Clone and build the parallel version of MFEM starting from the laghos-v1.0 tag:

~> git clone git@github.com:mfem/mfem.git ./mfem
~> cd mfem/
~/mfem> git checkout laghos-v1.0
~/mfem> make parallel -j
~/mfem> cd ..

See the MFEM building page for additional details.

Build Laghos:

~> cd Laghos/
~> make

This can be followed by make test and make install to check and install the build
respectively. See make help for additional options.

Mechanics	of	Running	the	Benchmark	

Sedov	Blast	

The main problem of interest for Laghos is the Sedov blast wave (-p 1) with partial assembly
option (-pa). A sample runs in 3D is:

mpirun -np 8 laghos -p 1 -m data/cube01_hex.mesh -rs 2 -tf 0.6
 -no-vis -pa

To partition an initial 3D mesh in a way that results in a perfectly balanced partitioning, with each
MPI task having the same number of zones, one needs to specify the correct partitioning (-pt)
and initial mesh (-m) options. The (-pt) option specifies the relative ratio between the number of
MPI tasks in each of the (x,y,z) directions, as shown in the examples below. Furthermore, the

 __ __
 / / ____ ____ / /_ ____ _____
 / / / __ `/ __ `/ __ \/ __ \/ ___/ High-Order Lagrangian
 / /___/ /_/ / /_/ / / / / /_/ (__) Hydrodynamics Miniapp
 /_____/__,_/__, /_/ /_/____/____/ https://github.com/CEED/Laghos
 /____/

 5

number of serial refinements (option -rs) should be sufficiently high to produce at least one zone
per MPI task, before the parallel refinements (option -rp) are performed.

Having an initial mesh with 8 zones and 4096 MPI tasks, one should use the -pt 111 -m
data/cube01_hex.mesh options:

mpirun -np 4096 laghos -p 1 -pt 111 -m data/cube01_hex.mesh
 -rs 3 -rp 2 -tf 0.6 -no-vis –pa

this ensures that after 3 uniform serial refinements, the mesh is 16 x 16 x 16, i.e. there is exactly
one element for each of the 4096 MPI tasks (these elements are additionally refined two more
times, -rp 2, in parallel). If one wants to use 2048 MPI tasks, the command line would be:

mpirun -np 2048 laghos -p 1 -pt 221 -m data/cube01_hex.mesh
 -rs 3 -rp 2 -tf 0.6 -no-vis –pa

leading to the same 16 x 16 x 16 serial mesh, but partitioned in 16 x 16 x 8 MPI tasks.

Similarly, for 1536 MPI tasks, one can specify an initial 4 x 3 x 2 mesh with 24 zones, using the
following options:

mpirun -np 1536 laghos -p 1 -pt 432 -m data/cube_24_hex.mesh
 -rs 2 -rp 2 -tf 0.6 -no-vis -pa

To run on 6144 MPI tasks, an appropriate initial mesh and serial/parallel refinements are
specified with:

mpirun -np 6144 laghos -p 1 -pt 322 -m data/cube_12_hex.mesh
 -rs 3 -rp 2 -tf 0.6 -no-vis -pa

	

Verification	of	Results	

To make sure the results are correct, we tabulate reference final iterations (step), time steps
(dt) and energies (|e|) for the following runs:

mpirun -np 8 laghos -p 1 -m data/square01_quad.mesh -rs 3 -tf 0.8
 -no-vis –pa

mpirun -np 8 laghos -p 1 -m data/cube01_hex.mesh -rs 2 -tf 0.6
 -no-vis –pa

run step dt e
1 1150 0.002271 46.3055694447
2 561 0.000360 134.0937837800

 __ __
 / / ____ ____ / /_ ____ _____
 / / / __ `/ __ `/ __ \/ __ \/ ___/ High-Order Lagrangian
 / /___/ /_/ / /_/ / / / / /_/ (__) Hydrodynamics Miniapp
 /_____/__,_/__, /_/ /_/____/____/ https://github.com/CEED/Laghos
 /____/

 6

An implementation is considered valid if the final energy values are all within round-off distance
from the above reference values.

Performance	Timing	and	FOM	

Each time step in Laghos contains 3 major distinct computations:

1. The	inversion	of	the	global	kinematic	mass	matrix	(CG	H1).	
2. The	force	operator	evaluation	from	degrees	of	freedom	to	quadrature	points	(Forces).	
3. The	physics	kernel	in	quadrature	points	(UpdateQuadData).	

By default, Laghos is instrumented to report the total execution times and rates, in terms of
millions of degrees of freedom per second (megadofs), for each of these computational phases.
These rates are reported as three separate figures of merits in the table below, together with a
total combined execution rate which is the reportable Figure of Merit (FOM) for the benchmark:

nodes cores order velocity
dofs/node FOM_1 FOM_2 FOM_3 FOM

4096 65536 Q2-Q1 788,738 26696.10 11792.90 3469.28 362.56
24576 393216 Q3-Q2 664,705 168497.00 74221.40 16695.60 2072.63

These results were obtained with the following runs on the Vulcan BG/Q machine at LLNL.

First run (1/24th of Sequoia):

srun -n 65536 laghos -pa -p 1 -tf 0.6 -no-vis
 -pt 211 -m data/cube01_hex.mesh
 --cg-tol 0 --cg-max-iter 50 --max-steps 2
 -ok 2 -ot 1 -rs 5 -rp 3

Second run (1/4th of Sequoia):

srun -n 393216 laghos -pa -p 1 -tf 0.6 -no-vis
 -pt 322 -m data/cube_12_hex.mesh
 --cg-tol 0 --cg-max-iter 50 --max-steps 2
 -ok 3 -ot 2 -rs 5 -rp 3

To make the last run 8 times bigger, one can either weak scale by using 8 times as many MPI
tasks and increasing the number of serial refinements: srun -n 3145728 … -rs 6 -rp 3,
or use the same number of MPI tasks but increase the local problem on each of them by doing
more parallel refinements: srun -n 393216 … -rs 5 -rp 4.

 __ __
 / / ____ ____ / /_ ____ _____
 / / / __ `/ __ `/ __ \/ __ \/ ___/ High-Order Lagrangian
 / /___/ /_/ / /_/ / / / / /_/ (__) Hydrodynamics Miniapp
 /_____/__,_/__, /_/ /_/____/____/ https://github.com/CEED/Laghos
 /____/

 7

	

Versions	

In addition to the main MPI-based CPU implementation in https://github.com/CEED/Laghos, the
following versions of Laghos have been developed:

• A	serial	version	in	the serial directory.	
• GPU version based	on OCCA.	
• A	RAJA-based	version	in	the	raja-dev	branch.	

Contact	

You can reach the Laghos team by emailing laghos@llnl.gov or by leaving a comment in the
issue tracker.

Copyright	

The following copyright applies to each file in the CEED software suite, unless otherwise stated
in the file:

Copyright © 2017, Lawrence Livermore National Security, LLC. Produced at the
Lawrence Livermore National Laboratory. LLNL-CODE-734707. All Rights reserved.

See files LICENSE and NOTICE for details.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
 National Laboratory under Contract DE-AC52-07NA27344, LLNL-SM-742945.

